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Target detection algorithms, Polarimeterc radar data,

Clutter parameters

This paper presents the results of a study of tar-
get detection algorithms which use polarimetric

radar data. Improved polarimetric target and
ground clutter models are presented and the per-
formance of algorithms using these models is de-
rived. Theoretical performance predictions based

on typical polarimetric target and clutter parame-
ters are presented and a comparison of the perfor-

mance of various algorithms is given.
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Studies of Target Detection Algorithms Which Use Polarimetric Radar Data*

L.M. Novak M.B. Sechtin M.J. Cardullo

M.I.T. Lincoln Laboratory
Lexington, MA 02173-0073

ABSTRACT polarimetric target types. Next, we propose more
realistic product model characterizations of tar-

This paper presents the results of a study of tar- gets and clutter which account for the effects of
get detection algorithms which use polarimetric spatial non-homogeneity of ground clutter and as-
radar data. Improved polarimetric target and pect angle variability of real targets. These new
ground clutter models are presented and the per- polarimetric target and clutter models are used to
formance of algorithms using these models is de- evaluate the sensitivity of the OPD and PMF detec-
rived. Theoretical performance predictions based tors to the effects of spatial variability of
on typical polarimetric target and clutter parame- ground clutter and aspect angle variability of
ters are presented and a comparison of the perfor- targets. We compare the performance of these al-
mance of various algorithms is given. gorithms to simpler detectors which use only am-

plitude information to detect targets. Theoreti-
INTRODUCTTnN cal performance predictions and algorithm perfor-

mance comparisons are presented in terms of detec-
This considers the use of polarimetric radar tor ROC curves (receiver operating characteris-
information in the detection and discrimination of tics) which show detection probability versus
targets embedded in a ground clutter background. false alarm probability for various polarimetric
A frequency diverse radar such as the HOWLS-flJ.) processors. Performance results are presented
radar is adopted as a baseline. The basic radar parametrically as a function of target-to-clutter
resolution is assumed to be on the order of the ratio, number of independent polarimetric measure-
size of a typical target (10 m by 10 m). We ments processed, and detector type. The ability
assume the frequency diverse radar has a fully to discriminate between target types using dif-
polarimetric measurement capability. To measure ferences in polarimetric scattering properties is
the full polarization scattering matrix (PSM), the also investigated. The final section of the paper
radar transmits two orthogonal linear polariza- summarizes our findings and describes possible
tions at each frequency. First, horizontal pola- extensions and future studies.
rization is transmitted and the radar receives two
linear orthogonal components (denoted HH and HV). THE BASIC POLARIMETRIC MEASUREMENT NODEL
Next, vertical polarization is transmitted and the
radar receives the VV and VH returns. By recipro- We begin by describing the basic mathematical
city, we assume VH=HV and thus the HH, HV, and VV modeling of targets and clutter used in our stud-
returns comprise the total information contained ies. These models are then used to derive the op-
In the polarization scattering matrix. Frequency timal polarimetric detector and the polarimetric
diversity is used to obtain successively indepen- matched filter. We write the radar return as the
dent scattering matrix measurements for multi-look polarimetric feature vector X, where
polarimetric processing schemes.

In the following section of the paper, we intro- H +j qH

duce the basic polarimetric measurement model and X (HVi + jHVq HV (1)
present a statistical description of both targets
and clutter. In the remaining sections of the VVi + jVVq VV
paper, we apply these statistical models of tar-
gets and clutter and derive the optimal polari-
metric detector (OPO). We show the fundamental The elements of the vector, HH, HV, and VV are
structure of the algorithm which processes polari- appropriately modeled as having a complex Gaussian
metric measurement data in an optimal manner. We probability density function (PDF). This POF Is
also derive the best linear polarimetric detector, given by the following expression
the polarimetric matched filter (PMF), and relate r
the structure of this processing scheme to simple 1 '

-exp -X " x (2)- n _

*This work was sponsored by the Defense Advanced
Research Projects Agency. The views expressed are where I = E{X X } is the covariance of the polari-
those of the author and do not reflect the offi- metric feature vector. Note that the data has
cial policy or position of the U.S. Government.
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zero mean (E[XI = 0). Thus, the complete charac- best possible detection performance achievable

terization of the Jointly Gaussian returns HH, HV, under ideal conditions. The performance of this

and VV is qiven in terms of an appropriate covari- ideal optimal detector provides an upper bound

ance matrix, 1. The corresponding covariance against which other suboptimal polarimetric detec-
matrices which we use for target and clutter data tion schemes can be compared. For our two-class
(in a linear polarization basis) are of the form problem (i.e., target-plus-clutter versus clutter)

the likelihood ratio is [3]

1 0 P/ (3) f(Xi wt+c) > TD say (9)

1 = 0 0 
0

where we denote the target-plus-clutter class by
P" / -Y 0 wt+c  and the clutter only class by % c". TD is

the detection threshold. The solution to this
likelihood ratio is easily shown to be a quadratic

where a E 
2I , e 2 E [ V 1 2 1, (4) detector of the form [3)

ElIl 2 11 C(10)

E I VV 1 21 EIHH VV*}X (1-,
-  ', X + n n T say

a n d f = , =r f [ V V * -
1 t + C 1 T

lI H 1 21 El I NH 1 21 Substituting the specific covariance matrices de-

Note that since the target is in a clutter back- fining our two classes into the above algorithm
modeled (by yields an interesting solution. Rewriting the

ground, the measured target data are above solution in a slightly different form, the
superposition) as optimal detector computes the distances to the

t+c = it + Ic (5) target-plus-clutter class and the clutter class

This implies the target-plus-clutter data Is also d (Q) ( t+XC) > In T

zero mean complex Gaussian with covariance

t : t + (6) where dc(X) =i + in I c (12)

and thus, has the same structure as given in andf I X + indc( (13)
Equation (3) above, with and dt+C = n t+c - n t+c

aat 
+ 

a (7) Evaluating the above distance measures, one ob-
t+c t C tains an expression for the optimal detection sta-

tistic (4]
ott +cCc 2

=+ r + I HH I I V 2v HV 2

(t+c 0t+c di(X) oiNN.I2 aivli)2 iNVi
- + + (14)

1r - a ( -p i) a i ( -p i) I i i
otl + acl

t+c 1 HH Cos (o H-VV)

a t P t/it + aC Pc/IC 
aiolPt)l/

Pt°c/'t+c at+c + In oae.(1-p2 ) ; 1=c, t+c

Also, the input target-to-clutter ratio is defined We observe that the fundamental structure of the
to be optimal polarimetric detector makes use of the

polarimetric amplitude information (i HHJ, JHV j,
- (8) I VV ) and also the polarimetric phase difference

(TnC)in - O--c - OVV which corresponds to the difference in

phase between the HH and VV complex returns. The
THE OPTIMAL POLARIMETRIC DETECTOR classifier applies optimal weighting to the ob-

served radar measurement data (as shown in Equa-
Next, in this bect;in of the paper, we derive the tion (14) above) prior to making its detection
optimal polarimetric detector (OPO) for the ideal decision.
situation, that is, assuming the parameters (a, 6,
Y, p) and the target-to-clutter ratio (T/Clin are

exactly known. The solution we obtain will reveal
the structure of the detector which provides the
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THE POLARIMETRIC MATCHED FILTER where the parameters 82 and 83 are given by the
expression

In the previous section of the paper we have de-
fined the two-class target detection problem and
have derived the detection algorithm which makes 411 - 3/2 P t3/
optimal use of the observed polarimetric return. 8,, = C 4 4 't I c t t c /c
This algorithm is optimal in the likelihood ratio
sense implying it yields the best possible proba- 22112

bility of detection for a given false alarm proba- 41cftP -
2tct+t c I + t c

bility. An alternative approach is to design a
linear processor or matched filter which processes
the polarimetric return so as to provide maximum 27 Pt - 2 'tPc
target-to-clutter ratio to the radar detector. c
This algorithm we shall call the polarimetric
matched filter (PMF) and is easily derived using The optimal polarimetric matched filter corres-

the approach given in Reference [6]. For com- ponds to one of the above three solutions and is

pleteness, a brief derivation of this detector is defined by the maximum of the three eigenvalues

given in the following paragraphs. (, 12, X3). Thus the polarimetric matched fil-
ter can be one of the three possible linear com-

Again the assumption is that we have two classes binations of the polarimetric measurements, namely

(the target-plus-clutter class and the clutter (i) y1 = HV
class) but we now seek the best linear weight vec-

tor for processing the polarimetric data vector. (ii) y, = HH + AVV (20)

Thus, we seek the linear combination y = hfx which
provides maximum target-to-clutter ratio at the (iii) y 3 

= HH + A3 VV
filter output, which is

hth To gain simple insight into the above solution, we

(T/C) h - (15) can show that for the special case when ft=yc=l,
out htz h the optimal polarization combinations become

We remark that the polarimetric matched filter (i) y, = HV
makes use of the target and clutter covariances
It and Ic respectively. This implies a design (ii) Y2 = HH + VV (21)

which is independent of the actual input target-
to-clutter ratio, i.e., a constant coefficient (iii) y3 = NH - VV
filter. It is well known 16] that the optimal These three solutions correspond to the following
weight vector, denoted h*, is obtained as the
solution to the generalTzed eigenvalue problem simple target-in-clutter situations

(i) HV is the polarization which provides

Ith * = X* ch* (16) maximum signal return for a dihedral
c - reflector in a homogeneous clutter

where h* is the eigenvector corresponding to tho background with the dihedral oriented
maximum eigenvalue, X*. Also, the maximum eigen- at ±45' relative to the horizontal.

value X is actually the optimal target-to-clutter
ratio out of the filter which is obtained as a (ii) HH+VV is the polarization combination

result of using the optimal h*. Equivalently, one which provides maximum signal return
may solve the following- simpler eigenvalue- for a trihedral reflector in a homo-

eigenvector problem to obtain the (1*, h*) solu- geneous clutter background.

tion (iii) HH-VV is the polarization combination

-z h* = X'h* (17) which provides maximum signal return
c t- - for a dihedral reflector in homoge-

It is more convenient to solve this equivalent neous clutter with the dihedral ori-

eigenvalue problem since the structure of the ented horizontally or vertically.

matrix - is simple and easily leads to an Other alternative approaches may be used in de-
c t tecting targets in clutter which are independent

exact analytical solution. The three eigenvectors of the parameters of the target-plus-clutter and
obtained are of the form clutter classes. These suboptimal detection algo-

,1 13 1 rithms make use of lesser amounts of polarimetric
information and we will consider two of these[ 0 0 (18) methods. The first scheme (used extensively in

0 8 a various radar applications by numerous research-
ers) processes the complex radar return by com-

puting the polarimetric span according to the
relation

y : HH 2 V+ 2 NV + IVV (22)
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The span detection statistic makes use of the tors X are scaled according to some random vari-

total power in the polarimetric return and has the a ble-a. This comprises our product model for
property that it is invariant with respect to the polarimetric data measurements and represents a
polarization basis used by the radar. The span is simple extension of the single polarimetric chan-
actually a suboptimal quadratic detector, since it nel product models of targets and clutter derived
is obtained from the simplified algorithm in [1), Determining the POF of random vector y is

straightforward and proceeds as follows. For a
r1  o 01 f HH1 (23) given value "a", we have

y = (HH*, HV'*, VV) 10 2 0 HV > T(

L10 vv EIz/o} : X 0 (2)

The span detector does not make use of the polari- COV ly/ o (26)
metric phase (¢HH - *VV) and utilizes only the

The conditional PDF of random vector y is also
polarimetric amplitude information, hence we shall complex Gaussian
gain some insight from the comparison of perfor-
mance results for the various algorithms as to the 1
usefulness of polarimetric phase in our target ___ _ XY 'Y- exp - -- I (27)
detection applicaticn. Finally, we will consider fnn/o) (2

a single polarimetric channel radar (specifically, a

HH) and will compare the performance of this base-
line algorithm to that of the more complex algo- Next, we evaluate the unconditional POF of random
rithms. vector y which is obtained from the integral

PRODUCT TARGET AND CLUTTER MODELS f(y) f f(/a) p(a) da (28)
0

Next, we present the results of a study of the
performance sensitivity of these polarimetric where p(o) is the POF of the scalar product multi-
detectors under the assumption that the target and plier. We find it convenient to assume a Gamma
clutter models are characterized as having a pro- (or chi-square) distributed cross-section model
duct model structure. Until now we have assumed a with density
homogeneous clutter background and each clutter
pixel in the scene had the same average polari- 110\v-l 1
metric- power and covariance between the polari- p(G) = - (29)
metric returns. Also, we assumed the target-plus- r(u) a
clutter samples to be from a single Gaussian PDF
with a constant average power and covariance. It As in References [7-91, we adopt the above two-
is more reasonable to assume the clutter back- parameter cross-section model where v is the order
ground to be spatially nonhomogeneous and the tar- parameter and - is related to the mean radar
get return to have an aspect angle variability. cross-section. This model was shown to yield the
To this end, we postulate random polarimetric tar- K-distribution for a single polarimetric channel
get and clutter models consistent with these more ground clutter and sea clutter. We have shown
realistic assumptions. Thus, to include the that this distribution is a reasonable model for
effects of spatial variability of clutter and both radar ground clutter and targets similar to
aspect variability of targets we postulate random that data collected using the HOWLS [1) radar.
polarimetric target and clutter models having the Thus, it is reasonable to apply this cross-section
product-model structure. The motivating idea model to the polarimetric feature vector problem
behind this study is to evaluate the effects of and we will show that this leads to a generalized
spatial variability of clutter and aspect angle K-distribution for the POF of random vector, y.
variability of targets on the performance of the Substituting Equations (27) and (29) into Equation
optimal polarimetric detector, the polarimetric (28), we obtain the result
matched filter, and our other simpler detectors.
To compare these detectors, we also need an opti- -
mal likelihood ratio detector for our more realis-
tic product models of targets and clutter. Thus, 2 Kn. 2
we also derive the exact POF for the product model (30)
polarimetric feature vectors and implement the f()
likelihood ratio detector for the product model n-v
problem. n tI ~r I ( - )
Since we are interested in a product model for
both targets and clutter, we take the model to be Given the exact PDF for the product model charac-
of the form terization of targets and clutter, we next obtain

the corresponding optimal log-likelihood ratio
Sox (24) detector. Omitting the unnecessary details, we

where C represents an arbitrary scale factor. obtain the distance measures Dt+c (y) and Dc(Y)

Our basic assumption is that the feature vectors X
have a specified covariance matrix I and the vec-
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(31) The above expression implies we have designed the

detector using nominal It+ c and Ic for our target-

d plus-clutter and clutter classes but are testing
Oi(y) (vi-n) In (di/2a i ) + In K the algorithm with measurement data having a prod-\, 2

0ai uct model structure by appropriately selecting I
/ and o. For now, however, we assume a given "all

Slnr(v) - in I iI - In -aand evaluate the exact characteristic function to
be of the form

where d2 = f 1i ' ic, t+c 3 I
1 1 (jw) = e jwc  (36)

The optimal polarimetric detector defined above is y/i (1-j2akiw)
of the same form as derived previously in Equation
(11), i.e., the detection statistic is computed where the eigenvalues (XI, X2, X.) are obtained
and the decision is from the simultaneous diagonalization of the

matrices

Dc(Y) - Dt+c(y) > In ID  ; say "Wt+c" (32) I_ -' and (37)

We use this detector in the ideal situation where c t+c

the parameters (0, E, 1, p) and target-to-clutter The eigenvalues were obtained as analytical
ratio are exactly known as are the parameters (v, closed-form expressions using MAXIMA [12]. The
o) also known. The performance of this detector probability density f ya(y) is obtained by expand-
provides an upper bound against which we can com- ing * (jw) in
pare the performance of our other detectors. In y/o p
this way, we may judge the relative degradation in inverse transform. Integrating f y/O(y) yields
performance which occurs when the detectors are
designed for some nominal target and clutter para- 3
meters but tested against product model input PD/ )= i (F) (38)
data. PD/FA(a) A1 P()(8

SENSITIVITY ANALYSIS OF POLARIMETRIC ALGORITHMS where

We are interested in evaluating the performance of PC(a) 1- exp C Xi > 0, C < 0 (39)the polarimetric detectors under the assumption 1

that they have been designed for nominal Gaussian
target and clutter statistics. The actual test Pi(a) = 0 X )i > 0, C > 0
inputs will then be assumed to have our product
model structure and the sensitivity of the detec-
tors to the effects of clutter spatial variability P__ exp C__ .
and target aspect variability will be determined. () e x2oi i<,C>
A brief summary of the analysis of the sensitivity
of the polarimetric detectors is given in the fol- P.(a) = 1 X < 0, C < 0
lowing paragraphs. For the optimal polarimetric i
detector, we write When the test inputs have the product model char-

\= X + C (33) acterized by the random variable a, we average the
y tc - detection probability with respect to o and obtain

where 3

C = In I tcl In T (34) FO/FA = E IPD/FA(O)l = il A iEPi(a) (40)
1 7 t+C Twhere

Taking the approach of References [10,11], we
evaluate the conditional characteristic function /
of random variable, y, which is 2 Kv(2 X ) (41)

EolPi(o) = 1 X- Com VX i>0, c<0

,yo( w) f".. . exp jw( t 1-- 1- !+ C ) -+ a r(v) C<
E {Pi(o)I = 0 ; )i>0, C>0

exp - dX (35)

~~n 0 n1 1 1  Kv(2,2/ ; .<,

E {Pi(a)J = X2 i- . vrv ' <O' C>O
E01P1o2 [X] V r(V) 1

E0 {Pi(o)J = 1 ; <, C<O
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The exact PD/FA performance of the OPO for homoge- and

neous target and clutter models is obtained from (-2k k m- \
Eq. (39) above by taking the random multiplier A = m (mn (46)
a=1. Thus the exact solution for the detection i - 3 n
performance of the OPD involves calculation of the R (-2Xk)m

three eigenvalues X,, X2 , X3 from simultaneous k=1

diagonalization of the covariance matrices of
Equation (37) above. [(-m-n+1)(-m-n+2) .... (-m)[(-2m+__+n+1) ....... (-m)

-in-n -2m+£+n
We are interested in evaluating the performance of 

[ 1 1 - { 112 ]

the OPD when two or more independent measurements TX. - N-X 2X.
of the polarimetric data, X, are observed and pro-

cessed in an optimal manner. The extension of the
theory to the multi-look case is summarized in the where i = modu1o3(i) + I

:ollowing paragraphs. The assumption we make is 1

that each observed polarimetric measurement vector i = modulo,(i+l) + I
from class '% " has the same statistics (0, C) 2

and each polarimetric measurement vector from Finally, when the test inputs have the product

class "w " has the same statistics (0, 1 multiplier, a, which is characterized by the Gamma
t+c - t+c distribution of Equation (29), we take the expec-

With these assumptions, it is easy to show that tation with respect to this variable and obtain
the likelihood ratio test for "m" independent
observations is comprised of sequential processing 3 m (,;
of each observed vector Xi, i=1,2,...m in the Eol P(m)/ = A. E0 P ) (47)

single-look quadratic classifier [13). The i1 £4

single-look detection statistics, yi, are then where

summed and compared to the detection threshold,
TD. Finally, since the characteristic function of

a sum of independent random variables is the prod- E P = E Gil()} ; Xi > 0, c < 0 (48)

uct of the individual characteristic functions, we
obtain for the m-look case

E ~P~i )

(in) - C 3 _1_Xi

y/ Y, a jw e H -j2o~xiw) m (42)

E " P~i)~ 1-EafGik(a)} X; < ,c
From this, one may easily obtain the exact formu- a =it i. < 0, c 0

las for detection and false alarm probabilities.
The solution is lengthy and only the final results
will be given here. E HP)= 0 ; i< O, c <0

3 m

=~m I Am P~m) (43) and E1G£a
D/FA( Ek{1ii(t)}

where 1C -+k(v-k (49)

Pi) = Gif(a) ; i > 0, c < 0 (44) avr(v) k=O 2 k-lk! 2 )'i/

S=X 0Analysis of the matched filter algorithm is sim-
1X > 0, c > 0 pler due to the fact that the algorithm is linear.

We briefly summarize the solution for the multi-
S= (<look case. The output of the filter is a complex

i 1-Gi(a) i < 0, c > 0 Gaussian comprised of the optimal weighted sum of
the HH, HV, and VV data. This signal is noncoher.

pim) ently detected and summed prior to being compared
tX < 0, c < 0 with the detection threshold, TD . Mathemati-

where cally, the procedure is represented as

dx (45) Y = h k > TD  ; say '"w (50)
- C 2£(1.1)! k
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Since random variable, y, is chi-square (the sum ALGORITHM PERFORMANCE PREDICTIONS
of m-independent exponential variables) we need

oncmpeE h t X I 'I for class "wt" and for The performance results presented in this section
only compute - - t~c of the paper are based on polarimetric measurement

class "wcl in order to determine detection perfor- data of typical ground targets and meadow clutter.
n c The polarimetric parameters of these targets and

mance of the algorithm. We obtain clutter are tabulated below (see Table 1). Detec-

2 tion performance results presented in the follow-
ElhXI od2 (h) (51) ing paragraphs are for target 1 versus clutter.

Target discrimination results presented are for

target 1, an armored target, versus target 2, a
where d2 (h) = h Z h truck.

and a is the product multiplier. The conditional 1. OP) Performance Results
detection and false alarm probabilities, for a
given value of the multiplier, a, are We have compared the performance of the OPD with

both span and single channel I HH I2 processing.
T k  Note that since OPD and span processing require

__ two pulses per look, we compare HH processing also

P(m) M/FA =  a d'CO) exp T D (52) with two pulses per look. For the latter case, we

k=O k! d(h) TABLE I

Again, the homogeneous target and clutter case are POLARIMETRIC PARAMETERS OF TARGETS AND CLUTTER
obtained by taking a=1 in the above expression.
When the product multiplier is modeled as the U(m2) E I p-F
Gamma random variable with parameters {(vi, Ti)

i=t+c,c} we obtain the average detection perfor- TARGET 1 58.5 0.19 1.0 0.28

mance to be TARGET 2 618.3 0.02 1.1 0.83

EIP D/FA(a)} - CLUTTER 4.75 0.18 1.6 0.63

kT assume two independent HH samples per look obtain-
2 m-1 (TD/d (h) D T D (53) able using pulse-to-pulse frequency diversity.

K k!-2(k))k T For single-look processing with homogeneous target
k=O k d2 (h) and clutter models, the curves of Figure 1 indi-- cate that HH processing outperforms span process-

ing even though the span detector uses all three
We have two suboptimal polarimetric detectors polarimetric amplitudes. The OPD, of course, pro-
which are under investigation and these use sim- vides the best performance since it utilizes all
pler detection statistics based on the polari- the polarimetric information in an optimally
metric span ( HHI2 + 2 HV I ' +jVVI ') and the weighted fashion. We remark, however, that the
single channel, I HH 1 . Analysis of both these performance improvement of the OPD is not really
algorithms is a straightforward modification of significant relative to HH processing. Further-
the above results. For example, the single HH I more, to achieve this improvement in detection
channel detection results are obtained by substi- performance requires exact knowledge of the
tuting for the matched filter target-to-clutter ratio and also the target and

clutter covariance statistics since the optimal
h = (1 0 0) (54) weighting coefficients are computed from this

information. Since these target and clutter sta-
and evaluating detection performance using Equa- t-stics would be difficult to predict a priori,
tions (53), (52). implementing the OPD in a real system would be

difficult. For these reasons, the OPD does not
Similarly, the detection statistic based on the appear to have a significant advantage over HH
polarimetric span is easily evaluated by noting processing.
that this detector is quadratic and of the form

The contribution of the polarimetric phase term,
X 1 0 (55) HH I I VV I cos (oHH - OVV), in this target detec-

y = _ 0 2 X + C > 0 ; say "Wt+c" tion application does not appear to be signifi-

0 1 cant. Specifically, the distance measures of
Equation 14 at. dominated by the radar cross-

Thus, we substitute Equation (55) into Equation section terms ( I N 2, I VV 1, NV 2). To fur-
(35) to obtain the characteristic function ther support this claim, we have evaluated the
Sy/a(jw) and use our previously developed solution detection perfovmance using amplitude-normalized

to evaluate detection performance for this algori- feature vectors. The optimal processor of norma-
thm. lized data (OPDN) derived in Reference [14], pro-

vides the best possible performance for normalized
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Gaussian feature vectors. The theoretically opti-
mal performance for the normalized data is shown we have evaluated the performance of the O over
in the curves of Figure 2. A comparison of the a reasonable range of ac (1, 1.5, 2, 2.5, and

performance of the optimal processor for norma- 3 dB). Figure 6 shows the OPD performance for
lized data (Figure 2) with that of the OPO which single-look and 4-look processing. Note that the
processes unnormalized data (Figure 1) clearly top curves correspond to the homogeneous clutter
shows that it is the polarimetric amplitude infor- model and are included as an upper bound on per-
mation which achieves the good detection perfor- formance. From the curves, it is clear that de-
mance results for the OPD. tection performance is severely affected by the

nonhomogeneity of clutter. We have also evaluated
Figure 3 summarizes the performance predictions the performance of the OPO over a reasonable range
for the 6 dB target-to-clutter case using multi- of o (1, 2, 3, and 4 dB). Figure 7 shows the
look processing. From the curves, it is again

clear that HH detection performance is superior to corresponding performance results. From these
detection using the span statistic. An optimally curves, it is seen that the single-look results
weighted combination of the I HH 1 , 1 VV I2 and are less affected by the change in at than the
I HV I

2 amplitudes might improve performance of the 4-look case, but there is, in general, a strong
span detector somewhat, however, the upper bound dependence on at -
obtained by the OPO cannot be exceeded and HH pro-
cessing is not significantly degraded relative to
this bound. We remark that the results of Figure We are interested in determining the performance

3 which correspond to multi-look processing of of the LRT test which defines the optimal process-
ing of product-model targets and clutter. Thisstatistically independent PSM samples are v'ery algorithm was defined in Equation (31). Since the

optimistic due to the idealized homogeneous target goeited degraed pErfoa nce d e

and clutter models used. With more realistic OPD exhibited e mded performance when designed

product model representations of targets and clut- for homodes wodels, but tested with nonhomoge-

ter, we will obtain performance results for HH neous models, we would like to have a performance

processing which are consistent with those comparison of the OPD with that of the LRT algori-
achieved using the HOWLS (1] radar data. thm. Our studies indicate that over the range ofparameter variations of interest, the OPD performs

The curves of Figures 4 and 5 show more realistic almost as well as the LRT test.

algorithm performance predictions based on the 2 PMF Detection Performance Results
product target and clutter models. Note that in
these figures, we show the performance of the OPO
which was designed for homogeneous target and A summary of our polarimetric matched filter stu-

clutter models but tested against nonhomogeneous dies is presented next. We have designed the PMF

product target and clutter model inputs. These based on the target and clutter covariances speci-

results were obtained using the analysis presented fied earlier. Evaluating the eigenvalues and

previously. Comparing the results of Figure 4 eigenvectors of the matrix CE we have the
with Figure I shows the deleterious effect of non- following solutions c t+c

homogeneous target and clutter on the performance
of all the algorithms. For example, for PFA = (i) = 12.78 0- h, = 1

0.001 the detection performance of the OPO with 0
10 dB target-to-clutter has been reduced from 90
percent to less than 70 percent. Similar reduc- I
tions can be observed for the other algorithms and (ii) X, = 7.54 -. h, = 0
at other target-to-clutter ratios. Note also the 3.6
performance improvement achieved through multi-
look processing is considerably reduced when the 1
more realistic target and clutter models are used (iii) X3 = 15.58 .- h3 = 0
(compare Figure 3 with Figure 5). Thus, the bene- -0.5
fits of frequency averaging of independent PSM
samples are reduced due to nonhomogeneity of the The best PMF is, therefore, specified by the solu-
target and clutter models. These observations are tion (iii) above. We have compared the detection
consistent r th the results obtained previously performance of this PMF with that of the single
using HOWLS data (1]. Also, we remark that the channel ( HH 11) detector. One of our objectives
improved performance of the OPD relative to HH is to make a direct comparison of the PMF with the
processing is not as significant since the OPO results of the HOWLS radar [1], so for these stud-
detector has been designed to be optimal for homo- ies we have used the product target and clutter
geneous target and clutter models. models with parameters at = 3 dB, ac = 2 dB and

(T/C) = 6 dB. Figure 8 summarizes the detection
From our previous studies [1], we have shown the results obtained. Equations (52) and (53) were
nonhomogeneity of ground clutter and aspect angle used to obtain these theoretical predictions.
variability of targets to be dominant factors in Referring to the curves of Figure 8, we show the
the reduction of detection performance, that is, detection performance of the PMF with 1, 2, 4, 8,
the sensitivity to the target and clutter st. dev. and 16 independent polarimetric samples processed.
parameters is quite severe. To verify this effect
also applies to our polarimetric detection schemes
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Since tnese oolarimetric samples require trans- The use of polarimetric information in discrimi-
mitting 2, 4, 8, 16, and 32 radar pulses, we show nating between target types appears to be promis-
the comparison with I HH I 2 processing with these ing on the basis of the results shown in Table 2.
same numbers of transmitted pulses. Our results However, to achieve reliable performance requires
are summarized as follows. The PMF performance
(with an equivalent number of transmitted pulses) TABLE 2
does not perform as well as I HH I2 processing un-
til we process about 8 independent fully polari- PROBABILITY OF CLASSIFICATION ERROR ()
metric measurements. With 8 independent looks (16
pulses transmitted) the two algorithms obtain
essentially the same performance. Note that the Number of Looks
performance predictions with 16 pulses transmitted
agree closely with the HOWLS measurements (i.e., T/C Ratio 1 2 4 1 8
P 0 -50 percent and PFA ~ 10"3). As more indepen- -
dent looks are processed, the PMF begins to out-
perform the JHH I  detector. 6 dB 26.0 19.2 12.0 6.2

We have also made a performance comparison of the 3 dB 27.8 21.0 14.0 7.4
best PMF design with a detector using a circular
transmit, circular receive (LL) system. The 0 dB 30.2 24.3 17.1 10.0
single channel ILL I detection results were ob-
tained by substituting for the matched filter multi-look processing with reasonably high (6-10

ht = (0.5, j, 0.5). It has been reported that dB) target-to-clutter ratios. We remark, however,
that good discrimination can only be achieved forthis scheme achieves better target-to-clutter targets exhibiting discernable differences in po-ratio than the linear transmit, linear receive larization characteristics.

(HH) system. This is because the even bounce (LL)
clutter return is less than the HH clutter return SUMMARY AND CONCLUSIONS
whereas the even bounce (LL) target return is
about the same as the HH target return. Note that This paper summarizes a study of target detection
a single LL measurement also requires only I pulse algorithms which use polarimetric radar data. A
transmission. We observe that the even channel model which accounts for the spatial nonhomogene-
(LL) detection performance is slightly better than ity of ground clutter and the aspect angle varia-
the HH detection performance. All three detectors bility of targets has been developed and the per-
are essentially equivalent in performance with 16 formance of various algorithms evaluated. Even
pulses transmitted. when processed in an optimal fashion, the addi-

tional information provided by the full PSM
3. Discrimination Performance of the OPD measurement does not appear to aid significantly

in target detection. A radar which transmits and
Once an object has been detected, we are inter- receives a single polarization (e.g., HH or LL)
ested in discriminating between different target would obtain almost as good performance as one
types (e.g., tank versus truck) based upon dif- which measures the full PSM. To achieve the addi-
ferences in polarimetric information observed by tional performance improvement from the OPD, one
the radar. Clearly, the polarimetric measurement must have exact knowledge of the target and clut-
data for targets may contain information as to the ter covariances including the target-to-clutter
type of target being observed and this information ratio. When these covariances are not known, the
may be used by an optimal polarimetric classifier single polarimetric channel detector would provide
to achieve discrimination. In our studies, we the best performance. For these reasons, the uti-
' e used feature vectors which are normalized by lization of independent multilook single polariza-

the Euclidean norm. This has the advantage of tion algorithms appears to be the best approach.
removing the product scale factor from the data If a single polarization is used, our studies have
and the classifier design becomes independent of shown that LL (even bounce) circular polarization
absolute radar cross-section. Only the relative provides slightly better performance than HH (lin-
amplitude differences between HH, HV, and VV chan- ear) polarization. However, the clutter data base
nels and the polarimetric phase *HH - 0VV are used used in these studies was limited, and further

to discriminate between target types. The results study of this problem using various types of clut-
of this study are summarized in Table 2 which ter (for example, snow clutter) is necessary. In
shows the average probability of classification addition, other detection algorithms which process
error for the two targets versus the number of LL, LR dual channel receive data should also be
independent polarimetric measurements processed investigated. Once the target is detected, how-independentolaretiomeas processe 6, an d ever, information contained in the PSM may be use-
for target-to-clutter ratios of 0, 3, 6, and 10 dB ful in discriminating between target types (e.g.,
for target 1 versus clutter. The corresponding tank versus truck). Our preliminary results indi-target-to-clutter ratio for target 2 versus clut- cate that many independent looks at the target are

ter is 10 dB higher due to the larger radar cross- reuired and the target r m e
section of target 2 (see Table 1). required and the target- to- clutter ratio must be

( 1fairly high for these algorithms to be effective.

This problem, using a larger set of targets, re-

quires further study. Also, a more realistic
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